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Abstract

General Relativity describes gravity as the geometry of spacetime. According to the theory, all
observable effects caused by gravity should be explained by a single spacetime description. However,
most existing tests of General Relativity study different physical effects separately and do not directly
check whether they are mutually consistent. In this project we introduce the Kerr Trisector Closure
(KTC), a method that tests the internal consistency of spacetime geometry around a black hole.
The method compares independent measurements of a black hole’s mass and spin obtained from
three different observational sectors: orbital motion, gravitational-wave ringdown, and black-hole
imaging. If General Relativity is correct, all three measurements must agree within their experimental
uncertainties. We formulate a mathematical closure statistic that quantifies the level of agreement
between the sectors. Using simulated data, we demonstrate that the method behaves correctly: it
does not falsely signal inconsistencies when all measurements are consistent, and it reliably detects
deviations when one sector is inconsistent. The Kerr Trisector Closure provides a simple and model-
independent way to test whether different observations of a black hole describe the same spacetime
geometry.

1 Introduction

General Relativity describes gravity as the curvature of spacetime. Mass and energy bend spacetime,
and this curvature determines how objects move, how light travels, and how time passes. In this pic-
ture, gravity is not a force, but a geometric property of spacetime itself. Over the past century, many
experiments and observations have confirmed individual predictions of General Relativity. The motion of
planets agrees with theory, gravitational waves from merging black holes have been detected, and images
of black hole shadows have been produced. Each of these observations supports General Relativity within
its own physical domain. However, these tests are usually performed separately. Orbital motion, gravi-
tational waves, and black hole imaging are analyzed independently, even though they are all governed by
the same spacetime geometry. As a result, existing tests do not directly check whether all observations
of a single black hole are mutually consistent with one and the same spacetime description. This project
addresses this missing consistency check. It asks a simple but fundamental question:

Do different observations of the same black hole all describe the same spacetime geometry, as
predicted by General Relativity?

2 The Kerr Spacetime

In General Relativity, gravity is not a force. Instead, mass and energy curve spacetime, and objects
move along paths determined by this curvature. A black hole is therefore described not as a solid object,
but as a particular structure of spacetime itself. An uncharged and rotating black hole is described by
the Kerr solution. This solution represents the spacetime geometry outside the black hole, including the
region where matter moves, gravitational waves are emitted, and light is bent. Remarkably, the Kerr
spacetime depends on only two physical parameters: the mass M and the dimensionless spin x. The mass
determines how strongly spacetime is curved, while the spin describes how fast the black hole rotates and
how strongly it drags spacetime around with it.



The dimensionless spin is defined as

J

=2 Ix| <1, (1)

X
where J is the angular momentum of the black hole. Here J and M are expressed in geometric units,
so that the spin parameter x is dimensionless. The upper limit |x| = 1 corresponds to the maximum
rotation allowed by General Relativity. All physical processes outside the black hole, such as the motion
of particles, the emission of gravitational waves, and the paths of light rays, are completely determined
by the values of M and x. If these two parameters are known, the external spacetime geometry is fixed.
Throughout this work we use geometric units, in which the gravitational constant and the speed of light
are set to one (G =c=1).

3 Three Ways to Measure the Same Spacetime

A black hole cannot be observed directly. Instead, its spacetime geometry is studied through the effects
it has on matter, radiation, and the motion of light. Different observations therefore measure different
physical consequences of the same spacetime. In this project we consider three independent ways to
measure the geometry around a black hole. Each method probes a different physical process, but all of
them are governed by the same Kerr spacetime.

3.1 Orbital Motion (Dynamical Sector)

The curvature of spacetime determines how massive objects move. When two compact objects orbit
each other, their motion follows the geometry of the surrounding spacetime. In close binary systems,
this motion produces gravitational waves. As the objects spiral together, the frequency and shape of the
gravitational-wave signal change in a precise way. This evolution depends on the mass and spin of the
black hole, because these quantities control how spacetime is curved. By analyzing the gravitational-wave
signal from the inspiral, we can determine an estimate of the spacetime parameters,

(Mdyn7 Xdyn)- (2)

3.2 Ringdown Oscillations (Perturbative Sector)

After a black hole is formed or disturbed, it does not settle down immediately. Instead, it undergoes
a short phase of oscillation while returning to a stable state. This process is called the ringdown. The
ringdown behaves like a damped vibration, similar to the sound of a struck bell. The frequencies and
decay times of these oscillations depend only on the mass and spin of the black hole. They are independent
of how the black hole was formed. By measuring the ringdown signal, we obtain a second, independent
estimate of the spacetime,

(Mrd7 er)- (3)

3.3 Light Paths and Imaging (Optical Sector)

Light does not travel in straight lines near a black hole. Instead, its path is bent by the strong curvature
of spacetime. Some light rays can even orbit the black hole before escaping. This behavior creates
visible features, such as the dark shadow surrounded by a bright photon ring. High-resolution images
can measure the size and shape of these features.

From black-hole imaging, we obtain a third estimate of the spacetime parameters,

(Mimg;, Ximg)- (4)

4 Hypothesis

This project is based on a single, testable hypothesis. General Relativity predicts that gravity is fully
described by the geometry of spacetime. For a black hole, this means that all observable effects outside
the black hole are governed by one spacetime solution. Our hypothesis is therefore:



If General Relativity correctly describes gravity, then independent measurements of a black
hole’s mass and spin obtained from orbital motion, ringdown oscillations, and black-hole imag-
ing are statistically consistent with a single Kerr spacetime.

In practice, the measurements will not be exactly identical, because all observations have uncertainties.
The hypothesis is considered valid as long as the differences between the measurements can be explained
by these uncertainties. If, however, at least one measurement disagrees with the others by more than
expected from experimental uncertainty, the hypothesis is violated. Such a result would indicate that the
different observations do not describe the same spacetime geometry.

5 The Kerr Trisector Closure Method

The Kerr Trisector Closure (KTC) is a way to see if different observations of the same black hole describe
the same spacetime geometry. In General Relativity, the structure of spacetime itself determines all
physical effects that gravity has. The Kerr spacetime describes the structure of a black hole. It only
depends on the black hole’s mass and spin. This means that all observable effects, like the movement
of matter, the release of gravitational waves, and the bending of light, should be controlled by the same
spacetime. In real life, these effects are seen in very different ways. Different physical processes and tools
are used by each observational sector to measure the black hole’s mass and spin. Because of this, each
measurement has its own uncertainties, and the values that are inferred will never be exactly the same.
The Kerr Trisector Closure is meant to find out if the differences between these measurements are normal
experimental uncertainty or if they are too big to be explained this way. If the differences are small
enough, all the observations can be seen as describing the same Kerr spacetime. If the differences are
too big, it means that at least one observation doesn’t fit with the others, which means that spacetime
consistency is breaking down.
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Figure 1: Schematic illustration of the Kerr Trisector Closure. Each ellipse represents the uncertainty
region of a mass—spin measurement obtained from a different observational sector: orbital motion (dy-
namical), ringdown oscillations, and black-hole imaging. If all three sectors describe the same spacetime,
their uncertainty regions overlap near a single point (the common Kerr spacetime). The closure test
quantifies whether such agreement exists.



5.1 Parameter Estimates from Each Sector
We describe the spacetime of a black hole by the parameter vector
0 = (M, x), (5)

where M is the mass and x is the dimensionless spin.
Each observational sector produces an independent estimate of these parameters:

édyn = (Mdyn7Xdyn); (6)
érd = (Mrd7er)7 (7)
éimg = (Mimga Ximg)- (8)

These estimates are accompanied by uncertainties, which we represent by covariance matrices Xqyn,
Yrd, and Yiyg. Each covariance matrix describes how precisely the corresponding sector can measure M
and x.

5.2 The Common Best-Fit Spacetime

If all observations describe the same Kerr spacetime, there should exist a single parameter pair
© = (M,x) (9)

that is consistent with all three measurements. We determine this common best-fit spacetime by choos-
ing the values of © that minimize the total squared deviation from the three sector estimates, while
taking their uncertainties into account. In simple terms, the best-fit spacetime lies closest to all three
measurements at the same time.

5.3 Defining the Closure Probe

To test whether the measurements are consistent, we first define the deviation of each sector from the
common best-fit spacetime: . ~
00, =6, — 0, k € {dyn,rd,img}. (10)

These deviation vectors tell us how far each measurement lies from the shared Kerr spacetime.
We now combine all deviations into a single quantity, called the closure statistic,

T? =) 605, 06y (11)
k

This quantity 72 is the mathematical probe used in the Kerr Trisector Closure. It measures the total
inconsistency between the three measurements, while properly accounting for their uncertainties.

The closure statistic T2 has a direct physical meaning. It measures how different the three measure-
ments of mass and spin are from one another, while taking their uncertainties into account. If the value
of T? is small, the differences between the measurements can be explained by experimental uncertainty.
In this case, all observations are consistent with a single Kerr spacetime, and the spacetime is said to be
closed. If the value of T? is large, the differences between the measurements are too large to be explained
by uncertainty alone. This indicates that at least one observational sector does not agree with the others,
and the spacetime description is no longer consistent. In this method we compare three independent
measurements of two physical parameters. This leaves four independent degrees of freedom. For this rea-
son, if all measurements describe the same Kerr spacetime, the closure statistic 72 follows a chi-squared
distribution with four degrees of freedom. If the observed value of T2 exceeds the range expected from
this distribution, the hypothesis of a single Kerr spacetime is rejected.

6 Demonstration Using Simulated Data

At the moment, one and the same astrophysical black hole has not yet been measured with high precision
in all three sectors at once (orbital motion, ringdown, and imaging). Because of this, we first test the
method itself using simulated data. In this work we assume that the measurement errors of the three



Expected Distribution of the Kerr Trisector Closure Statistic
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Figure 2: Distribution of the Kerr Trisector Closure statistic 72 obtained from simulated, mutually
consistent measurements. The solid curve shows the theoretical chi-squared distribution with four degrees
of freedom. The dashed line marks the rejection threshold at the 5% level. Values of T2 to the right of
this line indicate a statistically significant inconsistency.

observational sectors are statistically independent. The goal of this demonstration is simple: we want to
check that the Kerr Trisector Closure behaves in the right way.
Idea of the simulation. We start by choosing a “true” black hole spacetime with fixed parameters

0% = (M*,X"). (12)

Then we generate three independent “measurements” of ©*, one from each sector. Each measurement
contains random error, because real experiments are noisy. If General Relativity is consistent across the
three sectors, these errors should be enough to explain small differences between sectors. If we artificially
add a bias in one sector, the closure statistic should detect it.
Mathematical model for one simulated measurement. For each sector k € {dyn,rd,img}, we
simulate a measured parameter vector
ék =0 + €k, (13)

where the measurement error e is a two-dimensional random vector. We assume it is Gaussian-
distributed with mean zero and covariance matrix >:

e ~ N(0,%g). (14)

This Gaussian approximation is valid when the measurements are close to the best-fit solution, which is
the regime relevant for consistency tests. The assumption is a standard first approximation: near the
best-fit solution, many measurement uncertainties behave roughly like a Gaussian distribution.

For simplicity in this demonstration, we take the covariance matrices to be diagonal, meaning we
treat the mass and spin errors as uncorrelated:

2
(M 0
= ( 0 Ui,k) ' (15)

(The KTC method also works with non-diagonal ¥j; the diagonal case is just easier to explain and
already demonstrates the main idea.)



Step 1: Compute the common best-fit spacetime. From the three measurements O we
compute one common best-fit pair © = (M,y). It is defined as the value of © that minimizes the
weighted disagreement

X*(0) =) (0x —0)'s, (6, - 0). (16)
k
Note that x2(©) is used only to compute the best-fit parameters, while 72 is the closure statistic used
for the consistency test. This is a weighted version of “finding the best average”: measurements with
smaller uncertainty (smaller ¥ ) are trusted more.
The minimum can be written explicitly as

0= <zk: 2,;1>1 (zk: z,;lék> . (17)

Step 2: Compute the closure statistic. We define the deviation of each sector from the common
best-fit spacetime as

60, = O, — 6. (18)
The Kerr Trisector Closure probe is then the closure statistic
1% = 60y, 56y (19)
k

This number is small when all three sectors agree within their uncertainties, and it becomes large when
one sector disagrees too strongly.

Why the degrees of freedom are 4. We have 3 sectors and each gives 2 numbers (M, x), so
in total there are 6 measured values. We fit 2 common parameters (M,Y). That leaves 6 — 2 = 4
independent “leftover” pieces of information. Therefore, if all measurements are consistent with a single
Kerr spacetime, the statistic 72 follows a chi-squared distribution with 4 degrees of freedom.

Test A: Consistent (GR-like) data should not trigger false alarms. We generate many
simulated triples (@dyn, @rd, (:)img) using the model above and compute T2 each time. For a significance
level a = 0.05 (5%), the rejection threshold is the 95% quantile of x3,

T? > X3 0.05 ~ 9.49. (20)

In a correct method, only about 5% of perfectly consistent datasets should exceed this threshold (these
are statistical fluctuations).
In an example Monte-Carlo test with NV = 200,000 simulated datasets, we obtained

(T?) ~4.00,  Pr(T? > 9.49) ~ 0.050, (21)

which matches the expected behaviour of x3 very closely. This shows that the KTC does not falsely claim
an inconsistency when the sectors are consistent by construction.

Test B: A controlled inconsistency should be detected. Next we introduce an artificial,
systematic shift in one sector. For example, we modify only the imaging sector by adding a fixed bias
vector A:

®img ="+ A+ €img» (22)
while keeping the other two sectors unchanged,
édyn ="+ Edyn, érd = 0"+ ¢e44.- (23)

Now the three sectors no longer describe the same spacetime, so the closure statistic should become larger
and exceed the threshold more often. In an example where we injected a moderate bias in the imaging
sector, we found that T2 shifted strongly to larger values and crossed the 5% threshold in a large fraction
of the simulated datasets. This demonstrates that the KTC is sensitive to inconsistencies that cannot be
explained by measurement uncertainty.

Identifying the deviating sector. To see which sector causes the inconsistency, we also compute
the individual sector contributions

T = 6015, 160y,  T? =15, + T4+ 12 (24)

img*

In the injected-bias test, the largest contribution typically comes from the sector where the bias was
introduced, which provides a clear diagnostic of the problem.

Overall, these simulations show that the Kerr Trisector Closure behaves correctly: it stays quiet when
all sectors are consistent, and it reacts strongly when a real inconsistency is present.



Kerr Trisector Closure: Inconsistency Example
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Figure 3: Schematic illustration of a failed Kerr Trisector Closure. The uncertainty regions obtained
from the three observational sectors do not overlap. Such a configuration leads to a large closure statistic
T? and indicates that the observations cannot be described by a single Kerr spacetime.

7 Discussion

The Kerr Trisector Closure not only checks if the spacetime description is consistent, but it also tells us
where a possible inconsistency might be coming from. If a big difference is found, the differences from the
normal Kerr spacetime don’t have to be evenly spread out across all observational sectors. One sector, on
the other hand, may disagree much more strongly than the others. So, the way these deviations happen
can help us figure out where the problem came from in the real world. If the biggest difference is in the
dynamic sector, it means that the Kerr solution’s spacetime geometry doesn’t match the way big things
move. If this happened, it would mean that the way orbits work or the way gravity waves travel would
need to be changed. If the main deviation shows up in the ringdown sector, it means that the black
hole’s oscillation frequencies don’t match what the Kerr prediction says they should be. The ringdown is
sensitive to the area near the event horizon, so this difference would point to new effects in the spacetime
near the horizon. If the inconsistency is strongest in the imaging sector, it means that the way light
travels near the black hole doesn’t match the expected Kerr geometry. This could mean that the way
light moves through strongly curved spacetime has changed. Lastly, if all three sectors show big, similar
differences, the inconsistency can’t be blamed on just one physical process. In this case, the most likely
explanation is that the Kerr description itself is broken down, which means that a single Kerr metric
can’t describe the external spacetime.

8 Conclusion

In this project we introduced the Kerr Trisector Closure, a method designed to test whether different
observations of the same black hole describe a single, consistent spacetime geometry, as predicted by
General Relativity. The method is based on a simple idea: if gravity is fully described by spacetime
geometry, then independent measurements of a black hole’s mass and spin obtained from different physical
processes must agree within their experimental uncertainties. We applied this idea to three observational
sectors: orbital motion, gravitational-wave ringdown, and black-hole imaging. We formulated a closure
statistic that quantitatively measures the level of agreement between these sectors. Using simulated
data, we demonstrated that the method behaves as intended. When all measurements are consistent
by construction, the closure statistic remains within the expected statistical range. When an artificial



inconsistency is introduced in one sector, the method reliably detects the deviation and identifies its
origin. The Kerr Trisector Closure provides a model-independent way to test the internal consistency
of spacetime geometry without assuming any specific modification of General Relativity. While current
observations do not yet allow a full experimental application of the method, future gravitational-wave
detectors and high-resolution black-hole imaging experiments may make such tests possible. Overall, this
work shows that the idea of spacetime consistency can be turned into a concrete and testable criterion.
Whether confirmed or violated by future observations, the Kerr Trisector Closure offers a clear framework
for probing the geometric foundations of gravity.
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